n-color overpartitions, lattice paths, and multiple basic hypergeometric series
نویسنده
چکیده
We define two classes of multiple basic hypergeometric series Vk,t(a, q) and Wk,t(a, q) which generalize multiple series studied by Agarwal, Andrews, and Bressoud. We show how to interpret these series as generating functions for special restricted lattice paths and for n-color overpartitions with weighted difference conditions. We also point out that some specializations of our series can be written as infinite products, which leads to combinatorial identities linking n-color overpartitions with ordinary partitions or overpartitions. Résumé. Nous définissons deux classes de séries hypergéométriques basiques multiples Vk,t(a, q) et Wk,t(a, q) qui généralisent des séries multiples étudiées par Agarwal, Andrews et Bressoud. Nous montrons comment interpréter ces séries comme les fonctions génératrices de chemins avec certaines restrictions et de surpartitions n-colorées vérifiant des conditions de différences pondérées. Nous remarquons aussi que certaines spécialisations de nos séries peuvent s’écrire comme des produits infinis, ce qui conduit à des identités combinatoires reliant les surpartitions n-colorées aux partitions ou surpartitions ordinaires.
منابع مشابه
An Extension to Overpartitions of the Rogers-ramanujan Identities for Even Moduli
We study a class of well-poised basic hypergeometric series J̃k,i(a;x; q), interpreting these series as generating functions for overpartitions defined by multiplicity conditions on the number of parts. We also show how to interpret the J̃k,i(a; 1; q) as generating functions for overpartitions whose successive ranks are bounded, for overpartitions that are invariant under a certain class of conju...
متن کاملOverpartition Pairs and Two Classes of Basic Hypergeometric Series
We study the combinatorics of two classes of basic hypergeometric series. We first show that these series are the generating functions for certain overpartition pairs defined by frequency conditions on the parts. We then show that when specialized these series are also the generating functions for overpartition pairs with bounded successive ranks, overpartition pairs with conditions on their Du...
متن کاملAn extension to overpartitions of Rogers-Ramanujan identities for even moduli
An extension to overpartitions of Rogers-Ramanujan identities for even moduli Sylvie Corteel1, Jeremy Lovejoy2 and Olivier Mallet3 1CNRS, LRI, Bâtiment 490, Université Paris-Sud, 91405 Orsay Cedex, FRANCE 2CNRS, LIAFA, Université Denis Diderot, 2, Place Jussieu, Case 7014, F-75251 Paris Cedex 05, FRANCE 3LIAFA, Université Denis Diderot, 2, Place Jussieu, Case 7014, F-75251 Paris Cedex 05, FRANC...
متن کاملTransactions of the American Mathematical Society
We discuss a generalization of partitions, called overpartitions, which have proven useful in several combinatorial studies of basic hypergeometric series. After showing how a number of finite products occurring in q-series have natural interpretations in terms of overpartitions, we present an introduction to their rich structure as revealed by q-series identities.
متن کاملSylvie Corteel
We discuss a generalization of partitions, called overpartitions, which have proven useful in several combinatorial studies of basic hypergeometric series. After showing how a number of finite products occurring in q-series have natural interpretations in terms of overpartitions, we present an introduction to their rich structure as revealed by q-series identities.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008